

Computational Scientific Discovery in Social Sciences

AI-2023

Forty-third SGAI International Conference on Artificial Intelligence Cambridge, Tuesday December 12

European Research Council

Funding for top researchers from anywhere in the world

Session 1 (11.00-12.30)

- Fernand Gobet (40 minutes)
 - Introduction to Computational Scientific Discovery in (Social) Sciences
 - GEMS
- Laura Bartlett (20 minutes)
 - Using GEMS to develop theories in Psychology (1)
 - Posner task
- Noman Javed and Dmitry Bennett (30 minutes)
 - Using GEMS to develop theories in Psychology (2)
 - Verbal learning
- Lunch break

Session 2 (13.15-14.45)

- Peter Lane
 - Tutorial of the GEMS system, covering:
 - > Setting up task definitions for scientific experiments
 - > Defining a search space of candidate models
 - Searching techniques, such as Genetic Programming
 - Visualization and analysis of results

Introduction to Computational Scientific Discovery in (Social) Sciences

Fernand Gobet

erc

European Research Council

Funding for top researchers from anywhere in the world

Computational Scientific Discovery (CSD)

- Scientific Discovery is the process by which scientists create or find new knowledge
 - A new class of objects
 - A new class of celestial objects in astronomy
 - A new species in biology
 - New taxonomy
 - Linnaeus' systematic categorization of plants and animals
 - An empirical law
 - Kepler's law of planetary motion
 - An explanatory theory
 - Newton's theory of gravity
- Computational scientific discovery aims to automate certain aspects of this process

Very Brief History of Computational Scientific Discovery

- Not a new field!
- Dates back to the 1970s
- Scientific discovery can be seen as a form of heuristic search through a problem space
 - Simon (1966)
- Originally the idea of CSD met with great resistance
- Relatively few researchers until a couple of years ago
- Now, explosion of interest with the new waves of AI and machine learning

Two Main Traditions 1. Discrete Structures

- Early research aimed to find laws or models expressed in terms of standard scientific formalisms
- Good example: Langley et al. (1987)
- Uses discrete symbolic expression
 - Graphs
 - Mathematical equations
 - Computer code
- Researchers address various discovery tasks
 - Induction of mathematical laws from data
 - Qualitative models that explaining phenomena using hidden structures or processes
 - Replicating historical discoveries

Two Main Traditions 2. Continuous Structures

- ~ last 10 years
- Interest in computational discovery in physics, applied mathematics, medicine, etc.
- Focuses on continuous mathematics
- Carries out search through a *parameter space*
- Relies on neural networks and continuous optimization
- A 2023, an AAAI symposium brought together these two traditions

Recent Examples from Natural Sciences

- DeepMind AlphaFold
- Understanding protein structures is crucial for insights into biological and disease mechanisms
- Traditionally, determining protein structures has been a lengthy and complex process
- Alphafold predicts 3D protein structures with remarkable accuracy, using deep learning
- Solution to a 50-year-old grand challenge in biology
- Huge implications for drug discovery, disease understanding, and biotechnology

Recent Examples from Natural Sciences

- AI-Driven Personalized Cancer Treatment
- AI algorithms process complex genomic data to identify specific mutations in cancer cells
 - Helps in distinguishing cancer characteristics unique to each patient
 - Treatments that are more effective and have fewer side effects
- Potential for AI to transform cancer care

Example from Social Sciences

- To develop and refine theories of decision-making
- Peterson et al. (2021) collected a large data set on risky-choice decisions
 - Participants choose between different gambles
- Human-generated models of trained on the data
 - Subjective utility models
 - Prospect theory
 - Explained the data relatively poorly
- Machine learning discovered new, better theories
 - Strategies that are a mixture of previously proposed theories

The GEMS Approach Genetically Evolving Models in Science

The Original Discovery Problem

- To develop process models in cognitive psychology
 - Explaining how people perform in standard experiments
 - How they memorise a list of items
 - How they select a previously shown item out of two items
 - etc.

Example: Delayed Match to Sample (DMTS) Task

Example: Delayed Match to Sample (DMTS) Task

- Typical empirical data collected:
 - Percentage correct
 - Mean response time

How Is the Problem Formulated Computationally?

- Heuristic search through a problem space of discrete structures (models/programs)
- The programs carry out the same experiment(s) as humans
- The programs
 - Embedded in a high-level, domain-specific cognitive architecture
 - Are interpreted by a virtual machine
- The search is carried out using genetic programming

Scientific Theories as Computer Programs

- Scientific theories can be represented as computer programs
- These theories can be represented as trees
- These programs (trees) can be evolved

Cognitive Architecture

Specifies

- The common, non-changeable structures of the models
- Whether items are subject to activation and decay
- Very simple at the moment
 - Attention slot
 - Short-term memory
 - Long-term memory

How Is the Problem Formulated Computationally?

- Heuristic search through a problem space of discrete structures (programs)
- The structures/models are programs
 - for a high-level, domain-specific cognitive architecture
 - interpreted by a virtual machine
- The search is carried out using genetic programming

Genetic Programming (GP)

- Breeds and evolves entire computer programs
- Three main mechanisms
 - Selection
 - Mutation
 - Crossover

Crossover

The Key Idea

- 1. A population of programs/models is (randomly) generated using basic operators
- 2. The predictions of the models in a specific task are compared with the actual empirical data
- 3. The fitness value of each model is computed using step 2
- 4. The best models are selected for producing the next generation, together with crossover
- Steps 2 4 are repeated until stopping condition is satisfied

What Data and Knowledge are Provided to the System?

- 1. Description of the experimental methodology, including
 - The independent and dependent variables
 - The stimuli
 - The timeline of the experiment

Data and Knowledge (II)

- 2. The results obtained in the corresponding human experiments, for each of the experimental conditions
 - percentage correct
 - response times
 - type of errors
 - etc.

Data and Knowledge (III)

- 3. Description of the *architecture*
- 4. Description of the *operators* to be used
 - Specify basic cognitive operations
 - e.g. "put item into short-term memory"
 - Include a time cost
- Specification of the architecture and the operators is based on the literature
 - Many options are possible for both

How Are the System's Inputs Represented?

- Inputs related to the experiment
 - The experimental methodology and the timeline consist of Lisp code
 - The stimuli are symbols (typically numbers or letters)
 - The experimental results are vectors of real numbers

How Are the System's Inputs Represented? (II)

- Inputs related to the models
 - The *architecture* is specified by a virtual machine with *operators* supporting a simple interpreted language

How Are the System's Outputs Represented?

The *outputs* are models with measures of goodness of fit

Example: Delayed Match to Sample (DMTS) Task

- Empirical data
 - Percentage correct in various conditions

Example of Generated Theory

The Space of Candidate Models that the System Searches

- All potential programs that can be generated from the operators
 - In principle, an infinite space
 - In practice, the space is much smaller due to constraints imposed by the operators' time cost

What Criteria are Used to Evaluate the Candidate Models?

- Fitness function
 - Computes the match between the predictions of a model and the human data
 - Several measures (e.g. percentage correct, response time) can be used
 - They can be given different weights
 - Criteria such as parsimony
 - e.g., size of the program/model

How are the Results Generated by the System Interpreted?

- The models consist of operators for a highlevel, symbolic cognitive architecture
- Thus, they are easily interpretable
 - Abstract-syntax trees
 - Pseudo-code

Interpretation of Results (II)

- One important problem, typical of genetic programming
 - Bloating
 - The models can be long and complicated
- Actions taken
 - Methods for simplifying models
 - Methods for reducing the number of similar models

Interpretation of Results (III)

- Models can be visualised as clusters based on syntactic similarity
 - These clusters represent semantically different solutions to the task

Example

- DMTS task with 6 runs, 500 individuals and 2,000 generations
 - 1,164 "good" models
 - fitness < 0.1</p>
- Post-processing techniques
 - Remove dead-code \rightarrow 248 distinct models
 - Remove time-only operators \rightarrow 11 distinct models

Example of Model Clustering

х

Advantages of the Methodology

- Increases likelihood of finding theories to account for the empirical data
- Produces theories that meet the criterion of sufficiency
 - The theories can indeed carry out the tasks under study

Potential Objections

- Size of the search spaces is very large
- Bloating with genetic programming
 - Trees can become large, and parts of them may be redundant
- Computational cost of measuring theories' goodness of fit is high
- The operators may be the wrong ones
- Empirical data might not be reliable

Using GEMS to Develop Theories in Psychology

- Laura Bartlett
 - Posner task
- Noman Javed and Dmitry Bennett
 - Verbal learning