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Genetically Evolving Models of Science (GEMS)
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CHREST and Verbal Learning



Outline:

* What is CHREST

* Why should we care

* How it works

* Verbal learning simulation



CH REST (Chunking Hierarchy REtrieval STructures)
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Why CHREST?

" __ Dendrites
"‘\~ A4 Y

Axon
Summation
L 4 hy(z)

Activation Function

Visual STM

Made:2
<1110=
3

MNaode: 2
oL

Werbal 5TM

MNode: 3
< B

LTM

_,/’J\

Visual

Varbal

]

=1110=

Mode: 1

= h

3




Chunking

827608214703

121519562023

e T



Unsupervised chun
discrimination and

A R A EZp

T

Node: 0 | Node: 0
Visual Verbal

Node: 0
Action

ABm

T

Node: 0| | Node: 0| | Node: O
Visual Verbal Action
Node: 1

<>

T

Node: 0
Visual

Node: 0 Node: 0
Verbal Action
’<B>}’<Aﬂ
T I
Node: 2| | Node: 1

KIng: automatic
familiarisation

ABm

B S

Node: 0| | Node: 0| | Node: 0 Node: 0 Node: 0 Node: 0
Visual Verbal | | Action Visual Verbal Action
<A> <B>] [<A7]
| |
Node: 1 Node: 2| | Node: 1
<A> <> <A>
Eventua”y"- l NJ?T/“i Node: 0| | Node: 0
Visual Verba Action
e B i i ) ) Y [t
Node: 14 - ; 5
Node: 16| [Node: 15 Nd 13HNd 12HNd SHN A >‘ |El%deB.>3‘ Node: 2 EoAdeB.éD>
<o) [<C> [<B]
Node: 11 Node: 7 ‘Node: GHNode:S ‘
<BAC> <ADF <AC>|<ABD>
YR



Supervised association learning: XOR
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Verbal learning experiments

Nonsense syllable learning

Participants presented with CVC nonsense syllables

Trials repeated until learning occurs

Uncover laws of memory and learning

Refine computer models through simulations
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summary

 CHREST is a general cognitive architecture
* Learns by chunking

* Has general purpose learning mechanisms

* Verbal learning — cognitive experiment paradigm
* Uncovers laws of human memory and learning
* Provides building blocks for designing formal cognitive architectures



Genetically Evolving Models of Science (GEMS)
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GEMS Operators

Attention Short-term-memory
Attend-Stimulus Put attended item in STM
Attend-Response

Wait

" LTM(CHREST) )
Recognise-and-learn
Learn-and-link




GEMS: Model Evaluation Environment
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Bugelski's Experiment: Constant Learning Time
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Bugelski's Experiment: Constant Learning Time

C E Z M UN



Bugelski's Experiment: Constant Learning Time

» Total time required to learn a paired-associate list is not affected by
presentation rate

* Number of cycles/trials is inversely proportional to the presentation
time



Bugelski's Experiment: Constant Learning Time

* List of non-sense syllables are presented until learned completely
e Stimulus presented for 2 seconds

* Response presented for n seconds

e 2 seconds wait before next stimulus appear

* No gap between trials



Constant Learning Time: Results

Presentation Time (sec) People (trials) GEMS (trials)
6 10.2 10
8 8.8 9
10 5.8 6
12 4.7 5
19 3.3 3




Constant Learning Time: Results

* GEMS able to generate models learning in the same number of trials
e GEMS models producing errors in recalling list



Underwood’s Experiment: Intralist Similarity of
Stimuli and Responses

* intralist similarity of stimuli effects learning rate
* intralist similarity of responses does not



Underwood Results

Intralist Similarity

People (trials)

GEMS (trials)

Low-Low 23.2 23
Low-Medium 22.4 22
Low-High 24.4 24
Medium-Low 25.5 25
High-Low 30.7 31




summary

 GEMS can produce cognitive models for verbal learning
 CHREST acts as the Long-term memory for GEMS

Need further investigation:

* GEMS models producing a lot of errors. Need to compare it with
human errors.

* A theory of short-term memory
* Integration of CHREST and GEMS short-term memories
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