
 1

GEMS System: Tutorial

Presented at AI-2023 Workshop

"Computational Discovery in Social Sciences"

by Dr. Peter Lane, University of Hertfordshire

12th December 2023

 2

Overview

● setting up task definitions for scientific experiments
● defining a search space of candidate models
● searching techniques, such as Genetic Programming
● visualisation and analysis of results

 3

Part 1: Creating Models

 4

Part 1: Creating Models

 5

Part 1: Creating Models

Environment

Output

()

 6

Part 1: Creating Models

Environment

Output

()

Control Program
()

 7

Part 1: Creating Models

Environment

Output

Control Program
(respond “hello”)

 8

Part 1: Creating Models

Environment

Output

Control Program
(respond “hello”)

“hello”

 9

Part 1: Creating Models

Environment

Output

Control Program
(respond “hello”)

“hello”

Control Program
(respond “bye”)

Output

“bye”

Environment

 10

Part 1: Creating Models

Environment

Output

Control Program
(respond “hello”)

“hello”

Control Program
(respond “bye”)

Output

“bye”

Environment

 11

Part 1: Creating Models

Environment

Output

Control Program
(respond “hello”)

“hello”

Control Program
(respond “bye”)

Output
“bye”

Environment

Evaluation Function:

1. run model
2. observe output
3. if output is “hello” then model is correct, else incorrect

 12

Part 1: Creating Models

Environment

Output

Control Program CP:
1. (respond “hello”)
2. (respond “bye”)

What does (respond “hello”) do?

(respond TEXT) places the TEXT into the Output slot of Environment

 13

Part 1: Creating Models

Environment

Output

Control Program
(respond “hello”)

“hello”

 14

 15

Part 1: Creating Models

Environment

Output

Control Program CP:
1. (respond “hello”)
2. (respond “bye”)
3. (seq CP CP)

(seq (respond “hello”) (respond “hello”))

(seq (respond “bye”) (respond “hello”) (respond “bye”))

 16

Part 1: Creating Models

Environment

Output

Control Program
(seq
 (respond “bye”)
 (respond “hello”))

“hello”

 17

Part 1: Creating Models

Environment

Output

Control Program CP:
1. (respond “hello”)
2. (respond “bye”)
3. (seq CP CP)

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

 18

 19

Part 1: Creating Models

Environment

Output

Control Program CP:
1.(respond “hello”)
3. (respond “bye”)
4. (seq CP CP)

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

 20

Part 1: Creating Models

Environment

Output

Control Program CP:
1. ()
2. (respond “hello”)
3. (respond “bye”)
4. (seq CP CP)

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

Really? The model can respond
“bye” 100 times and that last

“hello” gets you a correct model?

 21

Part 1: Creating Models

Environment

Output

Control Program CP:
1. ()
2. (respond “hello”)
3. (respond “bye”)
4. (seq CP CP)

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

If we are trying to simulate a
human’s behaviour, what is
missing from our model?

 22

Part 1: Creating Models

Environment

Output

Control Program CP:
1. ()
2. (respond “hello”)
3. (respond “bye”)
4. (seq CP CP)

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

TIME

 23

Part 1: Creating Models

Environment

Output

Control Program

● Clock starts at 0
● For each step in the control program, the clock is

updated.
● Inputs/Outputs occur “at” a given time.
● Evaluation Function can use time when deciding

correctness.

 24

Part 1: Creating Models

Environment

Output

Control Program Clock: 0 ms

Control Program:

(respond “hello”)

 25

Part 1: Creating Models

Environment

Output
 “hello”

Control Program Clock: 500 ms

Control Program:

(respond “hello”)

 26

Part 1: Creating Models

Environment

Output
 “hello”

Control Program Clock: 500 ms

Control Program: Evaluation Function:

(respond “hello”) Is output “hello” within
time 400-800ms?

 27

Part 1: Creating Models

Environment

Output

Control Program Clock: 0 ms

Control Program: Evaluation Function:

(seq (respond “bye”) Is output “hello” within
 (respond “hello”)) time 400-800ms?

 28

Control Program: Evaluation Function:

(seq (respond “bye”) Is output “hello” within
 (respond “hello”)) time 400-800ms?

Part 1: Creating Models

Environment

Output
 “bye”

Control Program Clock: 500 ms

 29

Control Program: Evaluation Function:

(seq (respond “bye”) Is output “hello” within
 (respond “hello”)) time 400-800ms?

Part 1: Creating Models

Environment

Output
 “hello”

Control Program Clock: 1000 ms

 30

 31

 32

Part 1: Creating Models

Environment

Output

Control Program

● Input: the model can retrieve input from the environment (input-left)
● Attended: is a slot where a piece of information can be held
● STM: is a push-down stack storing information for as long as

needed

Input

STM

Attended:

 33

Part 1: Creating Models

Environment

Output

Control Program

Input
 Left: A Right: A

STM

Attended:

Clock:
 0 ms

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

 34

Part 1: Creating Models

Environment

Output

Control Program

Input
 Left: A Right: B

STM

Attended: A

Clock:
 200 ms

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

 35

Part 1: Creating Models

Environment

Output

Control Program

Input
 Left: A Right: B

STM

Attended: A

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

Clock:
 270 ms

A

 36

Part 1: Creating Models

Environment

Output

Control Program

Input
 Left: A Right: B

STM

Attended: B

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

Clock:
 470 ms

A

 37

Part 1: Creating Models

Environment

Output

Control Program

Input
 Left: A Right: B

STM

Attended: B

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

Clock:
 540 ms

B

A

 38

Part 1: Creating Models

Environment

Output

Control Program

Input
 Left: A Right: B

STM

Attended: 0

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

Clock:
 610 ms

B

A

 39

Part 1: Creating Models

Environment

Output
 “no”

Control Program

Input
 Left: A Right: B

STM

Attended: 0

(seq (input-left)
 (seq (put-stm)
 (seq (input-right)
 (seq (put-stm)
 (seq (cmp-1-2)
 (if (respond “yes”)
 (respond “no”))))))

Clock:
 1310 ms

B

A

 40

Delayed Match to Sample (1)

 41

Delayed Match to Sample (2)

 42

Delayed Match to Sample (3)

 43

Delayed Match to Sample (4)

Accuracy: 95.7%
Response time: 767ms

(Chao et al, 1999)

 44

Structure of Model

target
left
right

response

Environment

clock
current

attended item
short-term
memory

control program

Model

outputinput

 45

(prog-4 (wait-500) (input-target) (put-stm)
(prog-4 (wait-1000)

(input-left)
(put-stm)
(if (compare-1-2)

(respond-L)
(respond-R)))))

 46

 47

 48

Part 2: Program Synthesis - Genetic
Programming

1 Creates a population of models
2 Evaluates all the models using a fitness function
3 Selects the best models, and generates a new population by

altering/combining existing models.
4 Repeats until termination condition reached.

 49

Part 2: Program Synthesis
CP grammar:

1. (respond “hello”)
2. (respond “bye”)
3. (seq CP CP)

(respond “bye”)

(respond “hello”)

(seq (respond “hello”)
 (respond “hello”))

(seq (seq (respond “hello”)
 (respond “bye”))
 (seq (respond “bye”)
 (seq (respond “bye”)
 (respond “hello”))))

Random Population

 50

Part 2: Program Synthesis
CP grammar:

1. (respond “hello”)
2. (respond “bye”)
3. (seq CP CP)

(respond “bye”)

(respond “hello”)

(seq (respond “hello”)
 (respond “hello”))

(seq (seq (respond “hello”)
 (respond “bye”))
 (seq (respond “bye”)
 (seq (respond “bye”)
 (respond “hello”))))

Random Population

 51

Part 2: Program Synthesis

(respond “bye”)

(respond “hello”)

(seq (respond “hello”)
 (respond “hello”))

(seq (seq (respond “hello”)
 (respond “bye”))
 (seq (respond “bye”)
 (seq (respond “bye”)
 (respond “hello”))))

Random Population

(respond “bye”)

(seq (seq (respond “hello”)
 (respond “bye”))
 (respond “hello”))

(respond “hello”)

(seq (respond “bye”)
 (respond “bye”))

(seq (respond “hello”)
 (respond “bye”))

New Population

 52

 53

Multi-Objective Fitness Function

● accuracy to match that of humans - 95.7%
● response time to match that of humans - 767ms
● program size, to favour smaller models
● overall fitness must be in range [0.0, 1.0], with 0.0 representing the

best model

● As accuracy is a number in range [0-1.0], we can represent this by:
● fa = |accuracy - 0.957| / 0.957

 54

Fitness Function for Time

● Time can be any duration, hence we use a “squashing
function”

●

 55

Fitness Function for Time

● Time can be any duration, hence we use a “squashing
function”

● ft = half-sigmoid(|response-time - 767| / RT)
● RT controls how much the response-time will differ from

the target before ft gets close to 1.0

 56

Phased Evolution (1)

 57

Phased Evolution (2)

 58

 59

 60

 61

Phased Evolution (3)

 62

Phased Evolution (2)
Phase 1: Program size
increases as system

searches for a model with
good accuracy

 63

Phased Evolution (2)
Phase 2 begins: Accurate
model found, so fitness
function now combines

accuracy+response time

 64

Phased Evolution (2)Within Phase 2: Program
size continues to increase
while seeking an accurate

model with a good
response time.

 65

Phased Evolution (2)Phase 3 begins: Models
with good response time

have been found, so
fitness function now

includes program size.

 66

Phased Evolution (2)Within Phase 3:
increasingly smaller

models with excellent
accuracy and response

time are found.

 67

Part 3: Analysing the Output

● GEMS provides some tools to help analyse the process
and output of the program synthesis process

● Logging: outputs information about the models on each
cycle

● Post-processing: takes a population of models and
rewrites/modifies them

 68

Logging

 69

Logging

Trace loggers - produce whole population data
Short loggers - produce summary statistics per cycle

 70

Logging

 71

Logging

 72

Trace Logging

 73

Post-Processing (1)
● The models generated by the GP system are typically

messy:
● contain bloat
● operators duplicate or “mask” other operations
● etc

● These obscure the understandability of the models and
make it harder for a theorist to generate an explanation
of the observed behaviour (of the models and humans).

● Post-processing rewrites the messy models into cleaner,
semantically equivalent versions, suitable for analysis.

 74

Post Processing (2)

● Dead-code (“bloat”) is code which is never executed.
This only arises in IF statements.

● Dead-code is identified by tracing the program and
marking all nodes which are used. Unused branches can
then be deleted.

● (IF (CONDITION) (SOME-CODE) (UNUSED))
● => (PROG2 (CONDITION) (SOME-CODE))

● (gems:clean-individuals programs #’run-experiment)

 75

 76

Post-Processing (3)

● Because the models are time-dependent, some operators
are important only because they take up some processing
time, e.g. waiting for an input to become available.

● These time-only operators do not have an effect on the
output response, and some may be “masked” by later
operators:

● (PROG2 (INPUT-LEFT) (INPUT-RIGHT))
● => (PROG2 (WAIT-INPUT) (INPUT-RIGHT))

● (clean-individuals-time ...) function not yet in library

 77

Post-Processing Steps:

1. Read in the trace file
2. Extract models whose fitness is “good enough”
3. use gems:clean-individuals to remove dead code
4. use clean-individuals-time to remove time-only code
5. save / further process models

 78

Post Processing (4)

● GP system run six times with 500 individuals over 2000
generations

● 1164 distinct “good” models - overall fitness < 0.1
● this is over a third of the total - good models in GP tend to

proliferate in the population, with minor variations
● deleting dead-code (“bloat”) reduces this to 248 models
● rewriting time-only operators reduces this to 11 models

● a 99% reduction in total number of models

 79

Model Similarity (1)
(IF (ACCESS-1)
 (PROG2 (INPUT-RIGHT) (INPUT-LEFT))
 (INPUT-TARGET))

(IF (ACCESS-2)
 (PROG2 (WAIT-25) (INPUT-RIGHT))
 (INPUT-TARGET))

Components 1 (A):
(IF ACCESS-1 PROG2 INPUT-TARGET)

 (PROG2 INPUT-RIGHT INPUT-LEFT)
 IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-LEFT INPUT-TARGET

Components 2 (B):
(IF ACCESS-2 PROG2 INPUT-TARGET)

 (PROG2 WAIT-25 INPUT-RIGHT)
 IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-TARGET WAIT-25

 80

Model Similarity (2)
(IF (ACCESS-1)
 (PROG2 (INPUT-RIGHT) (INPUT-LEFT))
 (INPUT-TARGET))

(IF (ACCESS-2)
 (PROG2 (WAIT-25) (INPUT-RIGHT))
 (INPUT-TARGET))

Components 1 (A):
(IF ACCESS-1 PROG2 INPUT-TARGET)

 (PROG2 INPUT-RIGHT INPUT-LEFT)
 IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-LEFT INPUT-TARGET

Components 2 (B):
(IF ACCESS-2 PROG2 INPUT-TARGET)

 (PROG2 WAIT-25 INPUT-RIGHT)
 IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-TARGET WAIT-25

Similarity: 5 / 11 =
0.45

 81

Similarity Data

● (gems:program-similarity program-1 program-2)
● computes the similarity of two programs

● (gems:write-similarity-individuals programs filename)
● writes similarities in following (GNUplot) format

0 0 1.00

...

0 9 0.14

1 0 0.00

...

 82

 83

Multi-Dimensional Scaling
Takes the similarity between pairs of models and creates
2D (or n-D) coordinates where the distance between each
pair of points reflects the similarity between the models.

● Scatter plot visualisations
● Analysis of models in groups using Clustering

External tool used for this, e.g. Julia or a Java library.

 84

Scatter Plot of Model Similarity

 85

Clustering

● k = 3

 86

if target is visible:
 set model 'current' to target
wait for 140ms
push model 'current' onto top of STM
loop 3 times:
 loop 5 times:
 if stimuli are visible:
 set model 'current' to left input
if stimuli are visible:
 set model 'response' to "R"
push model 'current' onto top of STM
if first item in STM equals second item:
 set model 'current' to 1
else:
 set model 'current' to 0
if model 'current' is 1:
 if stimuli are visible:
 set model 'response' to "L"
else:
 wait for 70ms
wait for 70ms

Looks for Target

Waits for Input

Does Comparison

Outputs Response

 87

loop 2 times do
 if target is visible then
 set model 'current' to target
 end
 loop 2 times do
 wait for 100ms
 push model 'current' onto top of STM
 wait for 50ms
 if stimuli are visible then
 set model 'current' to right input
 end
 end
 if first item in STM equals third item then
 set model 'current' to 1
 else
 set model 'current' to 0
 end
...

Looks for Target

Looks for Input

Does Comparison

Outputs Response

Big loop:

 88

More Information

There is a related talk in Session 2b (15:00, Wednesday) of
the conference: A. Pirrone, P.C.R. Lane, L.K. Bartlett,
N.Javed and F. Gobet, 'Heuristic search of heuristics'

● GEMS: https://gems-science.netlify.app
● GEMS software: https://gems-science.netlify.app/software
● GEMS software repository: https://notabug.org/gems
● Peter Lane: https://go.herts.ac.uk/peter-lane

https://gems-science.netlify.app/
https://gems-science.netlify.app/software
https://notabug.org/gems
https://go.herts.ac.uk/peter-lane

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

