GEMS System: Tutorial

Presented at AI-2023 Workshop
"Computational Discovery in Social Sciences"

by Dr. Peter Lane, University of Hertfordshire

12%" December 2023

Overview

setting up task definitions for scientific experiments
defining a search space of candidate models
searching techniques, such as Genetic Programming
visualisation and analysis of results

Part 1: Creating Models

— T
— I
~ -

Part 1: Creating Models

— T
— I
~ -

Part 1: Creating Models

— T
\ /
Output

0

Environment

Part 1: Creating Models

— T
— —

Control Program

/ 0

S~ -

Output
0

Environment

Part 1: Creating Models

— T
— —

Control Program
(respond “hello”)

S~ -

Output

Environment

Part 1: Creating Models

— T
— —

Control Program

////////)' (respond “hello”)

S~ -

Output

“hello”

Environment

[— — — — — — — — — — — — — — —

T
—

Control Program
(respond “hello”)

S~ -~

Output
“hello”

Environment

—
—

Control Program
(respond “bye”)

N~

Output
“bye”

Environment

[— — — — — — — — — — — — — — —

— T
\
Control P:T

%

Output
“hello”

Environment

— — — — — — — — — — — — — — —

— T
— —

Control Program
(respond “bye”)

S~ -

Output
“bye”

Environment

Part 1: Creating Models

e —

| | |

| | |

: C : : Control Program

| (resp | | (respond “bye”)

| | |

| | |

| | Output : | | Output

: uhe”On | : ubyen

| : | |

| Environment Jl | Environment !
L e e e o e o e o L o e e e e o o —

Evaluation Function:

1. run model
2. observe output
3. if output is “hello” then model is correct, else incorrect

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
1. (respond “hello”)

2. (respond “bye”)

Output

Environment

What does (respond “hello”) do?

(respond TEXT) places the TEXT into the Output slot of Environment

12

Part 1: Creating Models

/

—
—

\
/

Control Program
(respond “hello”)

S~

/

Output

“hello”

Environment

13

{defstruct model
response ; hold response from model

)

{defun evaluate-program {program)
{1let ({result (run-experiment program))})
{if (equalp “hello" result) B8 1) ; compute fitness

1)

{defun run-experiment {program)
(1let ({(md {make-model :response "")})
{(interpret program md)
{model-response md)))

{defun interpret {operator md)
{case {operator-label operator)

{ crespond-hello
{setf {model-response md) “"hello™}))

{ trespond-bye
{setf {(model-response md) “bye™})}

{ otherwise
{error “interpret: unknown operator ™a" (operator-label operator)j))))

14

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
1. (respond “hello”)

2. (respond “bye”)
3. (seq CP CP)

Output

Environment

(seq (respond “hello”) (respond “hello”))

(seq (respond “bye”) (respond “hello”) (respond “bye”))

15

Part 1: Creating Models

/

— T
\ /
Control Program
(seq

(respond “bye”)

~—__(respond “hello”)) —~

Output

“hello”

Environment

16

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
1. (respond “hello”)

2. (respond “bye”)
3. (seq CP CP)

Output

Environment

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

17

{defun interpret {operator md)
{case {operator-label operator)
{ :respond-hello
{setf {(model-response md) “hello™})}
{ :respond-bye
{setf {model-response md} “‘bye™}}
{:5eq

{interpret (First {operator-children operator)) md)
{interpret (second (operator-children operator)) md})

{otherwise
{error "interpret: unknown operator

~a" {operator-label operator))l)}

18

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
1.(respond “hello”)

3. (respond “bye”)
4. (seq CP CP)

Output

Environment

There are an infinite number of possible models.

The correct models are those which respond “hello” last.

19

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
ﬁ |
I
Control Program | ~D.

Really? The model can respond
“bye” 100 times and that last
“hello” gets you a correct model?

pond “hello”)
pond “bye”)
CP CP)

There are an infinite number of possible mod

The correct models are those which respond “hello” last.

20

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
ﬁ |
I
Control Program | ~D.

I

I

I

I

I i)

| If we are trying to simulate a
: human’s behaviour, what is
I

I

I

I

pond “hello”)
pond “bye”)

O missing from our model?
J CP CP)

Environment

There are an infinite number of possible mod

The correct models are those which respond “hello” last.

21

Part 1: Creating Models

e — — — — — — — — — — — — — —

I
I
Control Erograﬁ | ~D-

pond “hello”)
pond “bye”)
CP CP)

There are an infinite number of possible mod

The correct models are those which respond “hello” last.

22

Part 1: Creating Models

Eontrol Prograi

Environment

Output

Clock starts at O

For each step in the control program, the clock is
updated.

Inputs/Outputs occur “at” a given time.
Evaluation Function can use time when deciding
correctness.

Part 1: Creating Models

EControl Prograi Clock: 0 ms

Output

Environment

Control Program:

(respond “hello”) h

24

Part 1: Creating Models

EControl Prograi Clock: 500 ms

Output
“hello”

Environment

Control Program:

(respond “hello”)

25

Part 1: Creating Models

EControl Prograi Clock: 500 ms

Output
“hello”
Environment
Control Program: Evaluation Function:
(respond “hello”) Is output “hello” within
« time 400-800ms?

Part 1: Creating Models

EControl Prograi Clock: 0 ms

Output
Environment
Control Program: Evaluation Function:
<
(seq (respond “bye”) Is output “hello” within
(respond “hello™) time 400-800ms?

Part 1: Creating Models

EControl Prograi Clock: 500 ms

Output
“byeﬂ

Environment

Control Program: Evaluation Function:
(seq (respond “bye™)

Is output “hello” within
(respond “héllo”))

time 400-800ms?

28

Part 1: Creating Models

Eontrm Prograi Clock: 1000 ms

Output
“hello”
Environment
Control Program: Evaluation Function:
(seq (respond “bye™) Is output “hello” within
(respond “hgllo”)) time 400-800ms?

{ defstruct model
clock
response ; hold response from model

)

{defun evaluate-program {program}

{let= {(result (run-experiment program})
{result-response (First result))
{result-time (second result})}

{if (and (equalp "hello” result-response}
{< result-time 888)
(< 480 result-time}}
B 1) ; compute fitness

))

{defun run-experiment (program)
{1let ((md {make-model :=clock 8 :Zresponse """}})
{interpret program md)
{1ist (model-response md)
{model-clock md)}))}

30

{defun interpret {(operator md)
{case (operator-label operator)

{ :respond-hello
{incf {(model-clock md) 568)
{setf (model-response md) ““hello™))

{ :respond-bye
{incf {(model-clock md) S68)
{setf (model-response md} “‘bye™})}

{:5eq
{interpret (First {operator-children operator)) md)
{interpret (second (operator-children operator)) md))

{ otherwise
{error "interpret: unknown operator ™~a" {(operator-label operator))i})

31

Part 1: Creating Models

STM
Control Program

Attended:

Input Output

Environment

 Input: the model can retrieve input from the environment (input-left)

* Attended: is a slot where a piece of information can be held

 STM: is a push-down stack storing information for as long as
needed

32

Part 1: Creating Models

STM Clock:
Control Program 0O ms

I
I
I
I
I
Attended: :
I
I
I
I
I

Input Output
Left: A Right: A

Environment

— —

(seq (input-left)
(seq (put-stm)
(seq (input-right)
(seq (put-stm)
(seq (cmp-1-2)
(if (respond “yes”)
(respond “na™))))))

33

Part 1: Creating Models

ST™ Clock:
Control Program 200 ms

I
I
: |
| I
| I
I
1A I
: Attended: |
| I
| |
I
I
| |

Input Output
Left: A Right: B

Environment

(seq (input-left) =
(seq (put-stm)
(seq (input-right)
(seq (put-stm)
(seq (cmp-1-2)
(if (respond “yes”)
(respond “no”))))))

Part 1: Creating Models

STM1_A Clock:
Control Program 270 ms

> a

Attended: LA
Input Output
Left: A Right: B

Environment

(seq (input-left)
(seq (put-stm) <
(seq (input-right)
(seq (put-stm)
(seq (cmp-1-2)
(if (respond “yes”)
(respond “no”))))))

Part 1: Creating Models

STM] A Clock:
Control Program 470 ms

|
|
|
|
|
Attended: LB :
|
|
|
|
|

| 3
Input Output
Left: A Right:

Environment

— —

(seq (input-left)
(seq (put-stm)
(seq (input-right) <
(seq (put-stm)
(seq (cmp-1-2)
(if (respond “yes”)
(respond “no™))))))

36

Part 1: Creating Models

I

STM| B Clock: |

Control Program A 540 ms :

I

Attended: LB I
Input Output |
Left: A Right: B |

I

I

Environment

— —

(seq (input-left)
(seq (put-stm)
(seq (input-right)
(seq (put-stm)
(seq (cmp-1-2)
(if (respond “yes”)
(respond “no”))))))

37

Part 1: Creating Models

I

STM| B Clock: |

Control Program A 610 ms :

I

Attended: [0 I
Input Output |
Left: A Right: B |

I

I

Environment

— —

(seq (input-left)
(seq (put-stm)
(seq (input-right)
(seq (put-stm)
(seq (cmp-1-2) <
(if (respond “yes”)
(respond “no”))))))

38

Part 1: Creating Models

I

STM| B Clock: |

Control Program A 1310 ms :

I

Attended<0> I
I

I

I

I

I

Input Output
Left: A Right: B “no”

Environment

— —

(seq (input-left)
(seq (put-stm)
(seq (input-right)
(seq (put-stm)
(seq (cmp-1-2)
(if (respond “yes”)
(respond “no”)))))) <

39

Delayed Match to Sample (1)

N

40

Delayed Match to Sample (2)

Delay

41

Time

Delayed Match to Sample (3)

NN

42

Delayed Match to Sample (4)

Accuracy: 95.7%
Response time: 767ms

(Chao et al, 1999)

Delay

N

Time

43

Structure of Model

current short-term
clock attended item memory

input output
—| control program

- - - """"""-"""""""""""--—-F-----"/:"" v I N
target response
left
right

N —

Environment

Table 1: Overview of operators used in DMTS5S models.

Name Function Type
input-X sets model ‘current’ to value of left/right/target input, if it s visible input
respond-X sets model ‘response’ to “R™/“L7, if inputs are visible output
access-N sets model ‘current’ to STM item N (N € {1,2,3}) stm
compare-M-N | compares value of STM items M and N (M#£N e {1,2,3}) cognitive
and sets ‘current’ to 1 if equal, or O if not
nil sets model ‘current’ to 0 cognitive
put-stm pushes value in model ‘current’ to top of STM stm
dotimes-N repeals a given expression (N € {2,3,5}) synlax
il execules condition, execules one ol lwo expressions synlax
based on value in model “current’
prog-N sequence of expressions (N € {2,3,4}) syntax
wait-N advances model clock (N € {25,50, 100,200, 1000, 1500}) syntax

(prog-4 (wait-500) (input-target) (put-stm)
(prog-4 (wait-1000)

(input-left)

(put-stm)

(if (compare-1-2)
(respond-L)
(respond-R)))))

:: Defines the state of the model
(defstruct model
clock current stm ; base model
inputs response ; I/0 requirements for DHTS task

)

;3 Collect results from running model {(defined by operator (program) + md).
{defun interpret {operator md)
{unless (> (model-clock md) 18888) ; time-out - adjust this if required
{case {operator-label operator)

{ zinput-left
{incf {(model-clock md) (timings-input {model-timings md})}}
{when (> (model-clock md) start-input)
{setf (model-current md) {(second {(model-inputs md})}})

{ zinput-right
{incf (model-clock md) (timings-input {(model-timings md}}}
{when (> (model-clock md) start-input)
{setf (model-current md) (third {(model-inputs md})}})

{ zinput-target
{incf (model-clock md) (timings-input {(model-timings md))}}
{when (<= (model-clock md) end-target})
{setf {(model-current md) {(First {model-inputs md})}})

{ crespond-left

16

:O—O:
On®, ..

C}{) ;; Holds information about results of experiment
: : (defstruct result

inputs response accuracy timing)

O;;: Run a single experiment against the given program, returning information on performance.
({defun run-experiment (program)
{1et ({results "{)}
{expt-data {alexandria:shuffle =data=)))
{dolist {input expt-data)
{1et (imd (make-model :clock @ :current A ::stm {8 @ @)

:inputs input :response “-")})
{interpret program md)
{1et ((result (make-result :inputs input :response "-" :accuracy B :timing 8}))

{when (> {(model-clock md) start-input}) ; when clock is after allowed time for response
{setf {(result-response result) {model-vesponse md}) ; record model's response
{setf (result-accuracy result) ; record whether it is correct or not
(if (string= (result-response result) {(target-response input))
1
8))
{setf (result-timing result) (- {model-clock md) start-input}) ; record the response time
)
{push result resultsj)})))
results))

__oTo- _oTo-. ~oTo..

[

Part 2: Program Synthesis - Genetic
Programming

Creates a population of models

Evaluates all the models using a fitness function

Selects the best models, and generates a new population by
altering/combining existing models.

Repeats until termination condition reached.

=N)
y ”\ Kf&
/
/
®

' /
(Bf%%g, Fj\@ Q @D @ kU/ _7’ @ ¥ @
BEFORE AFTER BEFORE AFTER
MUTATION CROSSOVER

48

Part 2: Program Synthesis

CP grammatr:

1. (respond “hello”)
2. (respond “bye”)
3. (seq CP CP)

» (respond “bye”)
(respond “hello”)

(seq (respond “hello”)
(respond “hello™)

(seq (seq (respond “hello”)
(respond “bye”))
(seq (respond “bye”)
(seq (respond “bye”)
(respond “hello™)))

Random Population

49

Part 2: Program Synthesis

CP grammatr:

1. (respond “hello”)
2. (respond “bye”)
3. (seq CP CP)

» (respond “bye”)

(respond “hello”) i\\\7

(seq (respond “hello”)
(respond “hello™)

(seq (seq (respond “hello”) *
(respond “bye”))
(seq (respond “bye”)
(seq (respond “bye”)
(respond “hello™)))

Random Population

50

Part 2: Program Synthesis

(respond “bye”)

/ (respond “bye”)

(respond “hello”) * pad
. i Y\ (seq (seq (respond “hello”)
(seq (respond “hello™) (respond “bye”))
(respond “hello™)) (respond “hello”))

(respond “hello”)
(seq (seq (respond “hello”) * //

(respond "bye™)) (seq (respond “bye”)

(seq (respond “bye”) (respond “bye™))
(seq (respond “bye”)
(respond “hello)))) (seq (respond “hello”)

(respond “bye”))

Random Population New Population >

o—O

()“““‘() ;; Returns a dotted list holding the available operators and number of childrer
C)“‘() {defun operator-set ()
0,0 *{ (INPUT-LEFT . @)

OO { INPUT-RIGHT . 8}
O—O (INPUT-TARGET . @)
Oo———0 {RESPOND-LEFT . @)
O—O (RESPOND-RIGHT . @)
0:0) (ACCESS-STH-1 . @)
OO {ACCESS-STH-2 . @)
O—O (ACCESS-STH-3 . @)
O———0 (COMPARE-1-2 . @)
oO—=oO (COMPARE-2-3 . @)
030 (TAMPARF-1-3 _ M

;; Runs the GP system with given parameters, results logged to files.
O—C (defun run-gp (&key (logger mnil)) ; logger function
O—((setf =phase= 1) ; initial phase for phased-evolution
{gems:launch {operator-set) N " evaluate-progranm

OO :total-generations =total-generations=
0,0 population-size =population-sizes=
o—O :initial-depth 1
OO OC maximum-depth 18
telitism €
OO)
00 —type :steady-state
:logger logger)) 52
0—0 Jaer 2o

Multi-Objective Fitness Function

accuracy to match that of humans - 95.7%
response time to match that of humans - 767ms
program size, to favour smaller models

overall fitness must be in range [0.0, 1.0], with 0.0 representing the
best model

As accuracy is a number in range [0-1.0], we can represent this by:
« fa=|accuracy - 0.957|/ 0.957

53

function”

sigmoid(x)

Fitness Function for Time

* Time can be any duration, hence we use a “squashing

54

Fitness Function for Time

* Time can be any duration, hence we use a “squashing
function”

 fi = half-sigmoid(|[response-time - 767|/ RT)

* RT controls how much the response-time will differ from
the target before f; gets close to 1.0

55

Phased Evolution (1)

l. f, — |accuracy — 0.957|/0.957: this is the difference of the
model’s and target accuracy, scaled to the range [0, 1].

2. f; — half-sigmoid(|response-time — 767|/RT): this is the
difference of the model’s and target response time, with a
variable scale factor RT.

3. fy = half-sigmoid(|program-size — 10| /PS): this is the dif-
[erence ol the model’s and an arbitrary largel program size
ol 10, with a vanable scale laclor PS.

f=axfat+bxfid+cxfs

56

Phased Evolution (2)

Phase 1 fitness f = f,
Phase 2 fitness [=(a x f, + b x f;),wherea+b=1

Phase 3 fitness f = (a X fo + b X fe + e x fs),wherea+b+c=1

57

;; runs experiment on a single program
{defun evaluate-program (program}
{let= {((results {run-experiment program)}
{accuracy (alexandria:mean {mapcar B'result-accuracy results)))
{f-a (fitness-accuracy accuracy))
{response-time (alexandria:mean {mapcar B 'result-timing results)))
{f-t (fitness-time response-time))
{program-size {(gems:program-size program))}
{f-5 (fitness-size program-size)))
{values ; overall-fitness, optional extra information
{overall-phased-fitness f-a f-t f-s5)
{1list accuracy f-a response-time f-t program-size f-s =phase=) ; extra information

1))

58

;s Computes the f_a objective function: 95.7% is target mean accuracy :
{defun fitness-accuracy {(performance}
{(f (abs (— B.957 performance))
B.957))

:: Computes the £ t objective function: 767ms is target mean response -
{defun Fitness-time {(response-time}

{gems:half-sigmoid {(F {abs (- response-time 767))
=time—rt=)))

:: Computes the f s objective function.

{defun fitness-size {(program-size})
{gems:half-sigmoid (F program-size =size-ps=)))}

59

;; Computes the fitness for current phase
{defun fitness-for-phase (f-a f-t f-s5}
{case =phase=
{1 ; single objective
f-al
{2 ; two objectives
{/ (+ (= =propn—fitness—accuracy= f-a)
{= =propn—fitness-time= f-t))
{+ =propn—-fitness-accuracy= =propn—-fitness-times=)))
{otherwise ; all three objectives
{+ (= =propn—fitness—accuracy= f-a)
{= =propn—fitness-time= f-t)
{= =propn—fitness—size= f-5)))))

;: Computes fitness, using the phases
{defun overall-phased-fitness (f-a f-t f-s)}
{when (and (< =phase= 3)

{{ (fitness-for-phase f-a f-t f-s5) =good-model-threshold=))

{incf =phase=))
{fitness—for-phase f-a f-t f-s5))

60

Fitnhess

Phased Evolution (3)

Fitness against Generation: log-T-10000-085
R L e T T T E S S

- Objectives

Overall Fitness
Accuracy (f_a)
Response Time (f _t)
Program 5ize (f_s)

0 R NS USRS ST SO SRR O S &
0 10 20 30 40 50 B0 70 g0 a0 100

Generation
61

Fitnhess

Phased Evolutio/

Fitness against Generation: log-T-1004

\

Phase 1: Program size
iIncreases as system

10 ot F it searches for a model with

0 R NS USRS ST SO SRR O S &
0 10 20 30 40 &0 &0 70 g0 90 100

Generation

good accuracy

_

- Objectives

Overall Fitness
Accuracy (f_a)

Response Time (f _t)

Program 5ize (f_s)

62

Fitnhess

Phased Evolutio

Fitness against Generation: log-T-1004
S S A e S s S

/

Generation

\

Phase 2 begins: Accurate
model found, so fithess
function now combines

accuracy+response time

_

Objectives

Overall Fitness
Accuracy (f_a)

Response Time (f _t)

Program 5ize (f_s)

63

Fitnhess

Phased Evolutio

Fitness against Generation: log-T-100t
1 R p— ﬁ€ : ; : :."""?"_"ﬁ i

\

Within Phase 2: Program
Size continues to increase
while seeking an accurate
model with a good
response time.

_

Objectives

: & Overall Fitness

0.5 --1--- e e e L T B . - .IE'.EELIFEE‘;."I:'I:_E]
Response Time (f_t)
® Program 5Size (f_s)
0 T SN SRR SN SN WSS IS SO e

0 1o 20 30 40 50 B0 70 g0

Generation

g0 100

64

Fitnhess

Phased Evolutio

Fitness against Generation: log-T-1004
G R s S S

with good response time

- ~

Phase 3 begins: Models

have been found, so
fitness function now
includes program size.

_

Objectives

: & Overall Fitness

T Tt | ST SFPISSSPE SRR SN R B Y e—— ..-..|-...-...l\.-...-..-§. - . Al:l:ural:"}r l:f_a]
e Response Time (f_t)
: @ Program 5ize (f_s)
0 T SN SRR SN SN WSS IS SO e

0 1o 20 30 40 50 B0 70 g0 90

Generation

65

Fitnhess

Phased Evolutio/ Within Phase 3: h

increasingly smaller

Fitness against Generation: log-T-100f models with excellent

1.0 ----- H """" accuracy and response
:\ :] : : : : : time are found. /

jectives

: i i : ; : : : : Creerall Fitness

0.5 -I. 5. 5.........?..-......%..-. . ..i........ .-..-.-.a; E. = AEEUFEE‘;" “:_a]

: : : : : : : : : Response Time (f_t)
Program 5ize (f_s)

0 R NS USRS ST SO SRR O S &
0 10 20 30 40 &0 &0 70 g0 90 100

Generation
66

Part 3: Analysing the Output

GEMS provides some tools to help analyse the process
and output of the program synthesis process

Logging: outputs information about the models on each
cycle

Post-processing: takes a population of models and
rewrites/modifies them

67

Logging

:: Runs the GP system with given parameters, results logged to files.
{defun run-gp (&key (logger nil))} ; logger function

{setfr =phase=x 1)

{gems:launch

; initial phase for phased-evolution

{operator-set) E evaluate-progran

total-generations =total-generations=

population-size =population-—size=
-initial-depth 1
maximum-depth 1@

plitism t

ctype :steady-state
:logger logger})

68

Oo——==0
o—oO .
o0 Logging
o—oO
O—O {defun run-group {name}
O—O {run—gp :logger {gems:combine-loggers
O—O {gems :make-logger (format nil "log-"a.csv' name)
:if-exists -supersede)
O'O {gems :make-logger {format nil “population—-"a.yml" name)
o—-0 Iname name
O—O :kind :trace
O—O :filter #'{lambda {(gen) (= gen =total-generations=))
O_O zif-exists csupersede
1))
;0
o—=O
o——=0
O_O: = Trace loggers - produce whole population data
G Short loggers - produce summary statistics per cycle
o—O
O—0
o0—oO
OO
O-C 69
o—oO

Logging

{defun evaluate-program (program}
{let= ({results {run-experiment program})
{accuracy (alexandria:mean {(mapcar #°result-accuracy results)))
{f-a (fitness-accuracy accuracy)l}
{response-time (alexandria:mean (mapcar E"'result-timing results)))
{f-t {(fitness-time response-time})
{program-size {(gems:program-size program))
{f-s (fitness-size program-size)))
{values ; overall-fitness, optional extra information
{overall-phased-fitness f-a f-t f-s5)
{1ist accuracy f-a response-time f-t program-size f-s =phase=) ; extra

1 |

B.478, 08.580, 9.478, 140.0008, 8_387, 2.688, 8.915, 1.808
8.478, 8.588, 8.478, 1408.008, B8.387, 3.68868, 08.015, 1.08008
8.478, 8.5808, 8.478, 140.008, B8.387, 2.688, 8.915, 1.808
8.478, 8.588, 8.478, 285.40688, B8.384, 8§.888, 08.848, 1.68008

" 70 n Cnan n LW70 AER RRR m R7TR O nRAnR " Rhni 4 [RnRnR

A e R -k
-

70

Fitness

Logging

Fitness against Generation: log-T-10000-085
T e T T S e S &

- Objectives

Overall Fitness
Accuracy (f a)
Response Time (f_t)
Program 5ize (f_s)

'
. ' ' . 1 . ' 1 I 1 .
3 i i P 1 : H H ¥ 1 H
H H H ' H . H ' H H
D 5 cchkzcafczckasszssssdhsszssssdessssssadassafsfadasszssccfasscssachassssssshlassssssskasssass ks
. v v i + 1 1 ¥ h
i i i i i
H H H H i H
' ' H \ H H ' H

0.0 ___.._1 \H._..
0 10 20 30 40 50 60 7O g0 80 100

Generation

71

generation:
number: 588
individuals:
— fitness: B.856
extras: (1 0.84493206 825 B0.83779161 34 B.1683811 3)
program: |
{PROGZ
(PROG4 {WAIT-Z2d8) (RESPOMD-LEFT})
(PROGH
{PROGY {WAIT-288) {(RESPOMD-RIGHT) (ACCESS-STH-1)
(ACCESS-STH-2))
{ INPUT-TARGET) (WAIT-2008)
{PROGL (PUT-3TH) (PROGZ (WAIT-288) (PUT-STH))
{PROG3 (RESPOHND-RIGHT) {IHPUT-RIGHT)
(IF {RESPOHD-RIGHT}
{PUT-5TH)
{ INPUT-TARGET)}})
(ACCESS-STH-1}))
(PUT-STH))
(PROGY4 (ACCESS-STHM-2) (ACCESS-STH-2)
{IF {(COMPARE-1-3)
{ACCESS-3TH-2)
(RESPOHD-LEFT)})
{COMPARE-1-3)}))
— fitness: B8.366
extras: (172 A_. 47753397 630 0.088908723% 27 A 13818579 3)
program: |
{PFROG?Z
{PROGY (RESPOND-LEFT) {RESPOND-LEFT)

fPRNOCH

Post-Processing (1)

The models generated by the GP system are typically
messy:

contain bloat

operators duplicate or “mask” other operations

etc
These obscure the understandability of the models and

make it harder for a theorist to generate an explanation
of the observed behaviour (of the models and humans).

Post-processing rewrites the messy models into cleaner,
semantically equivalent versions, suitable for analysis.

73

Post Processing (2)

Dead-code (“bloat”) is code which is never executed.
This only arises in |IF statements.

Dead-code is identified by tracing the program and
marking all nodes which are used. Unused branches can
then be deleted.

- (IF (CONDITION) (SOME-CODE) (UNUSED))
- => (PROG2 (CONDITION) (SOME-CODE))

(gems:clean-individuals programs #run-experiment)

74

Frequency

600

200

400

300

200

100

Count of individuals in generation with dead code proportion

0.0-01 01-02 0.2-0.3 0.3-04 04-05 05-06 06-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Proportion of dead code

75

Post-Processing (3)

Because the models are time-dependent, some operators
are important only because they take up some processing
time, e.g. waiting for an input to become available.

These time-only operators do not have an effect on the
output response, and some may be “masked” by later
operators:

. (PROG2 (INPUT-LEFT) (INPUT-RIGHT))
. => (PROG2 (WAIT-INPUT) (INPUT-RIGHT))

(clean-individuals-time ...) function not yet in library

76

Post-Processing Steps:

1. Read in the trace file

2. Extract models whose fitness is “good enough”

3. use gems:clean-individuals to remove dead code

4. use clean-individuals-time to remove time-only code
5. save / further process models

;3 given a file containing a population of models
;5 — perform post-processing
;3 - return a list of models, in the form of gems:individual structures, so preserving fitness etc
{defun good-models (filename Eoptional (print-them nil)}
{1let= {{models ; get models from final population
{rest {Ffirst (last (gems:read-trace filename}))))
{good-models ; extract those models within good-model threshold
{remove—if #'(lambda {(model) (> {gems:individual-fitness model) =good-model-threshold=))
models))
(ndc-models ; vremove dead-code from the model programs
{gems:clean-individuals good-models B run—experiment))
(nto-models ; remove time-only code from the model programs
{clean-individuals-time ndc-models B run—experiment)))

L N U1 Sprepey

77

Post Processing (4)

GP system run six times with 500 individuals over 2000
generations

1164 distinct “good” models - overall fithess < 0.1

* this is over a third of the total - good models in GP tend to
proliferate in the population, with minor variations

deleting dead-code (“bloat”) reduces this to 248 models

rewriting time-only operators reduces this to 11 models
* a99% reduction in total number of models

78

Model Similarity (1)

(IF (ACCESS-1)
(PROG2 (INPUT-RIGHT) (INPUT-LEFT))
(INPUT-TARGET)) AN B
AU B

(IF (ACCESS-2)
(PROG2 (WAIT-25) (INPUT-RIGHT))
(INPUT-TARGET))

Components 1 (A):
(IF ACCESS-1 PROG2 INPUT-TARGET)
(PROG2 INPUT-RIGHT INPUT-LEFT)
IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-LEFT INPUT-TARGET

Components 2 (B):
(IF ACCESS-2 PROG2 INPUT-TARGET)
(PROG2 WAIT-25 INPUT-RIGHT)
IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-TARGET WAIT-25

Model Similarity (2)

(IF (ACCESS-1)
(PROG2 (INPUT-RIGHT) (INPUT-LEFT))
(INPUT-TARGET)) AN B
AU B|

(IF (ACCESS-2)
(PROG2 (WAIT-25) (INPUT-RIGHT))
(INPUT-TARGET))

Similarity: 5/ 11 =

Components 1 (A): 0.45

IF ACCESS-1 PROG2 INPUT-RIGHT

Comionents 2 iBi:

IF ACCESS-1 PROG2 INPUT-RIGHT INPUT-TARGET

INPUT-TARGET

80
WAIT-25

Similarity Data

* (gems:program-similarity program-1 program-2)
« computes the similarity of two programs
* (gems:write-similarity-individuals programs filename)

 writes similarities in following (GNUplot) format
001.00

090.14

100.00

81

Best models similarity (dead code removed) for experiment 2

Similarity
1.0

Iu.g
0.8

Iu.?
0.6

10

Individual

20

10 20

Individual

82

Multi-Dimensional Scaling

Takes the similarity between pairs of models and creates
2D (or n-D) coordinates where the distance between each
pair of points reflects the similarity between the models.

» Scatter plot visualisations
* Analysis of models in groups using Clustering

External tool used for this, e.g. Julia or a Java library.

83

Scatter Plot of Model Similarity

1 . YRR RPRER—. . N R——

Group

0.2 v I— I— I T—
2.0

15

L e oo e c% |1_[J

0.6 0.4 0.2 0.0 0.2 0.4

84

-0.15-

02 -

0.25-

Clustering

kmeans1
-
[|
..
o0
o
[| L
‘ ®
o o
[]
.“.
o
03 025 02 015 0.1 005 0 05 0.1 0.15 02 0.25 03

85

if target is visible:

set model 'current’ to target
wait for 140ms
push model 'current’ onto top of STM
loop 3 times:

loop 5 times:

if stimuli are visible:
set model 'current’ to left input

if stimuli are visible:

set model 'response' to "R"
push model 'current’ onto top of STM

if first item in STM equals second item:

set model 'current' to 1
else:

set model 'current' to O
if model 'current' is 1:

If stimuli are visible:

set model 'response' to "L"

else:

wait for 70ms
wait for 70ms

Looks for Target

Waits for Input

Does Comparison

Outputs Response

86

loop 2 times do

if target is visible then
set model 'current’ to target

end

loop 2 times do
wait for 100ms
push model 'current’ onto top of STM
wait for 50ms
if stimuli are visible then

set model 'current’ to right input

end

end

if first item in STM equals third item then
set model 'current' to 1

else
set model 'current' to 0

end

Big loop:

Looks for Target

Looks for Input

Does Comparison

Outputs Response

87

More Information

There is a related talk in Session 2b (15:00, Wednesday) of
the conference: A. Pirrone, P.C.R. Lane, L.K. Bartlett,
N.Javed and F. Gobet, 'Heuristic search of heuristics'

GEMS: https://gems-science.netlify.app

GEMS software: https://gems-science.netlify.app/software
GEMS software repository: https://notabug.org/gems
Peter Lane: https://go.herts.ac.uk/peter-lane

88

https://gems-science.netlify.app/
https://gems-science.netlify.app/software
https://notabug.org/gems
https://go.herts.ac.uk/peter-lane

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

